Blog - A la une

N-Heteropolycycles as functional materials: organic semiconductors, fluorophores and building blocks for molecular surface networks

Séminaire Chimie ICGM/ED459

Prof. Lutz H. Gade (Anorganisch-Chemisches Institut, Universität Heidelberg, Germany)

Le Mercredi 16 Novembre 2022 à 10h

CNRS, Amphithéâtre Balard (bâtiment Balard RdC, 1919 route de Mende)

Date de début : 2022-11-16 10:00:00

Date de fin : 2022-11-16 11:30:00

Lieu : CNRS amphi Balard

Intervenant : Prof. Lutz H. Gade

Anorganisch-Chemisches Institut, Universität Heidelberg, Germany

Organic semiconductors are key components of numerous electronic and optoelectronic devices for a wide range of applications such as light-emitting diodes, photovoltaic cells and organic thin-film transistors (TFTs). Thus the search for new organic materials which serve this purpose is of considerable current interest. Several years ago, we developed an efficient metal-induced synthesis of 4,9-diamino-3,10-perylenequinone diimine (DPDI) by oxidative coupling of two 1,8-diaminonaphthalene units.[1] This functionalized perylene may be converted to tetraazaperopyrene (TAPP)[2] as well as a range of derivatives[3] which have proved to possess considerable potential as organic n-channel semiconductors.[4]

We recently considerably expanded the chemical space towards more nitrogen-rich polycyclic compounds.[5a] Many of these are high quantum yield emitters, in solution, in polymer matrices and in the solid state.[5b] Some have displayed interesting potential for applications in molecular polaritonics.[5c]

Finally, heteropolycycles have proved to display an interesting surface chemistry when deposited on well defined faces of coinage metal single crystals.[6] The formation of stable porous surface networks (and their exciting physical properties),[7] provide highly ordered nanoscale grids and have been investigated in a series of studies.[8]

The author acknowledges funding by the Deutsche Forschungsgemeinschaft (DFG SFB 1249).


1. K. W. Hellmann, C. H. Galka, I. Rüdenauer, L. H. Gade, I. J. Scowen, M. McPartlin, Angew. Chem. Int. Ed. 1998, 37, 1948.

2. T. Riehm, G. DePaoli, A. Konradsson, L. de Cola, H. Wadepohl, L. H. Gade, Chem. Eur. J. 2007, 13, 7317.

3. a) S. Geib, S. C. Martens, M. Märken, A. Rybina, H. Wadepohl, L. H. Gade, Chem. Eur. J. 2013, 19, 13811; b) L. Hahn, H. Wadepohl, L. H. Gade, Org. Lett. 2015, 17, 2266.

4. a) S. C. Martens, U. Zschieschang, H. Wadepohl, H. Klauk, L. H. Gade, Chem. Eur. J. 2012, 18, 3498; b) L. Hahn, F. Maaß, T. Bleith, U. Zschieschang, H. Wadepohl, H. Klauk, P. Tegeder, L. H. Gade, Chem. Eur. J. 2015, 21, 17691; c) B. A. R. Günther, S. Höfener, U. Zschieschang, H. Wadepohl, H. Klauk, L. H. Gade, Chem. Eur. J. 2019, 25, 14669; d) W.-S. Zhang, M. Matthiesen, B. Günther, J. Wensorra, D. Fischer, L. H. Gade, J. Zaumseil, R. R. Schröder, Adv. Electron. Mater. 2021, 7, 2100400.

5. a) T. Wesp, T Bruckhoff, J. Petry, H. Wadepohl, L. H. Gade, Chem. Eur. J. 2022, 28, e202200129; b) T. Wesp, T. Bruckhoff, H. Wadepohl, L. H. Gade, Chem. Eur. J. 2022, 28, e202201706; c) T. Wesp, P. Valsalan, A. Kochan, M. Herzog, H. Wadepohl, J. Zaumseil, L. H. Gade, Chem. Eur. J. 2022, 28, e202202661.

6. a) M. Stöhr, M. Wahl, C. H. Galka, T. Riehm, T. A. Jung, L. H. Gade, Angew. Chem. Int. Ed. 2005, 44, 7394; b) A. Shchyrba, C. Wäckerlin, J. Nowanowski, S. Nowakowska, J. Björk, S. Fatayer, T. Nijs, J. Girovski, S. Martens, A. Kleibert, M. Stöhr, N. Ballav, T. A. Jung, L. H. Gade, J. Am. Chem. Soc. 2014, 136, 9355; c) M. Matena, J. Björk, M. Wahl, T.-L. Lee, J. Zegenhagen, L. H. Gade, T. A. Jung, M. Persson, M. Stöhr, Phys. Rev. B 2014, 90, 125408.

7. a) J. Lobo-Checa, M. Matena, K. Müller, J. H. Dil, F. Meier, J. Osterwalder, L. H. Gade, T. A. Jung, M. Stöhr, Science 2009, 325, 300; b) S. Nowakowska, A. Shchyrba, S. Kawai, T. Ivas, J. Nowakowski, S. Fatayer, C. Wäckerlin, T. Nijs, E. Meyer, J. Björk, M. Stöhr, L. H. Gade, T. A. Jung, Nat. Commun. 2015, 6, 6071; c) S. Kawai, A. S. Foster, T. Björkman, S. Nowakowska, J. Björk, F. F. Canova, L. H. Gade, T. A. Jung, E. Meyer, Nat. Commun. 2016, 7, 11559; d) A. Ahsan, L. Buimaga-Iarinca, T. Nijs, S. Nowakowska, S. K. Rejaul, S. F. Mousavi, M. Heydari, M. Stöhr, S. S. Zaman, C. Morari, L. H. Gade, T. A. Jung, J. Phys. Chem. Lett. 2022, 13, 7504.

Contact local ICGM : Dr. Éric Clot, D.R. CNRS